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Turbulent transport of a tracer: An electromagnetic formulation
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We present a formulation of the problem of advection and diffusion of a passive tracer by an arbitrary,
incompressible velocity field. A Wiener path integral is employed to prove that the problem isidentical to the
diffusive dynamics of a charged particle in electromagnetic fields constructed from the velocity field. The case
of zero diffusion has characteristics that coincide with the integral curves of the velocity field. This case is, of
course, structurally unstable, and the limit of small diffusion is correctly described by the Wenzel-Kramers-
Brillouin limit of our path-integral principle, wherein the tracer dynamics equals the orbits of point charges in
electromagnetic fields. To lowest order, diffusive effects are accounted for within a Hamiltonian framework,
and the limit of zero diffusion emerges as an unstable submanifold embedded in a six-dimensional phase space.
We illustrate these ideas by considering the simple case of tracer advection-diffusion in the flow field of a
time-independent, straight vortex line. We also briefly discuss generalization of the path-integral principle for
the case where tracer sources and/or sinks are included. When the velocity field obeys the Navier-Stokes
equation, the associated electromagnetic fields satisfy the equations of magnetohydrodynamics for a fluid with
resistivity that is equal to the viscosity of the~real! fluid. @S1063-651X~98!07507-2#

PACS number~s!: 47.27.Gs, 05.40.1j, 05.60.1w, 47.65.1a
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The transport and diffusion of a tracer~such as tempera
ture fluctuations or concentration variations of a dye! in a
turbulent fluid can often be modeled by assuming that
tracer does not influence the dynamics of the turbulence
self @1#. In the simplest cases, the evolution of the conc
tration of such a passive tracer,n(x,t), is described by the
following advection-diffusion equation~ADE!:

]n

]t
1v•“n5

k

2
“

2n,

“–v50 , ~1!

wherev(x,t) is the given incompressible velocity field, an
k.0 is the tracer diffusivity. The ADE is linear inn, and the
random character of the solutions arises from either rand
ness ofv(x,t) or from the initial distribution ofn. The mul-
tiplicative nature of the randomness, arising from the adv
tive term, leads to intermittency in the statistical distributi
functions describing the tracer@2#.

We note that the ADE is identical to the Fokker-Plan
equation describing the overdamped Brownian motion o
particle subject to an external forcev(x,t) ~for unit
mobility!—cf. references in@3# for a review of the latter.
One difference is that the Fokker-Planck equation is only
approximation in which the lowest two moments are
tained, whereas the ADE is an ‘‘exact’’ equation in the co
text of passive tracer advection. A more considerable dif
ence is that we do not have to viewv(x,t) as a given force
field. In this paper we demonstrate that it is more fruitful
construct electromagnetic~EM! potentials,

A52v, w52
v2

2
, ~2!
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from the givenv(x,t), and formulate the ADE as a Wiene
path integral~WPI! for the diffusive dynamics of a poin
charge (q5m5c51). A and w are the vector and scala
potentials for the EM fields, and incompressibility transla
to working in the Coulomb gauge“–A50. The WPI has
received considerable attention in the literature on Brown
motion †cf. Refs.@3~b!# and@4#‡, and we will develop analo-
gies, as well as point out differences as they arise. Below
provide a brief sketch of the derivation of the ADE from th
WPI principle before discussing the nature of the EM field
as well as their action on the tracer. Of particular interes
the case whenv(x,t) obeys the Navier-Stokes equation.

The electric and magnetic fields corresponding to eq
tion ~2! are

E5] tv1“S v2

2 D ,
~3!

B52“3v52v52vorticity.

The dynamics of the~fictitious! charge in the~fictitious! EM
fields is governed by the usual equation of motion,

ẍ5E1 ẋ3B, ~4!

The Galilean invariance of the ADE~1! is reflected in the
invariance of Eqs.~3! and ~4! with respect to boosts. This
property might not be immediately obvious, but can
readily verified by boosting to a~primed! frame that travels
with uniform velocityu with respect to the laboratory frame
The EM fields in the boosted frame areE85@] t8v8
1“8(v82/2)# and B85@2“83v8#, respectively. Applying
the transformation laws, (x85x2ut,t85t,v85v2u), it can
be verified thatE85E1u3B and B85B, which are the
well-known ~Galilean! transformation laws for EM fields; it
hardly needs to be stressed that the Galilean invarianc
Eq. ~4! follows automatically. There is also a basic diffe
522 © 1998 The American Physical Society
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PRE 58 523TURBULENT TRANSPORT OF A TRACER: AN . . .
ence between potential flows (v50), and vortical flows
(vÞ0); the former produce no magnetic field, whereas
magnetic fields of the latter have significant effect on parti
dynamics.

The above equation of motion may also be derived fr
an action principle. For any pathx(t) that goes from (xi ,t i)
to (xf ,t f), we define the action functional

S@x~ t !#5E L~x,ẋ,t !dt, ~5!

where the Lagrangian

L5
ẋ2

2
1A• ẋ1

A2

2
5

1

2
uẋ1Au2 ~6!

5
ẋ2

2
2v• ẋ1

v2

2
5

1

2
uẋ2vu2. ~7!

The equations of motion~4! are obtained, as usual, by e
tremizing the action with respect to variations of the pa
x(t), keeping the end points fixed. Both Lagrangian and
tion are non-negative definite, and their minimum value
zero occurs for the special solution,ẋ5v(x,t) of the equa-
tions ~4!; borrowing a term from a related work on ove
damped Brownian motion, we will refer to this solution
the optimal solution.

Now we introduce the WPI principle: the relative pro
ability of going from (xi ,t i) to (xf ,t f) by pathx(t) is as-
sumed to be given by exp@2S/k#, whereS is the action given
by Eq.~5!. Therefore, the probability of going from (xi ,t i) to
(xf ,t f) by any path is given by the Green function

G~xf ,t f ;xi ,t i !5 (
paths

e2S/k, ~8!

where the sum over paths requires employment of
Wiener measure~cf. Ref. @5#! in the space of paths. We ma
write this explicitly using Feynman’s method~c.f. Ref. @6#!
of splitting the time interval into a large number (N11) of
thin slices of equal sizes,e5(t f2t i)/(N11). At each inter-
mediate time step,t1 ,t2 , . . . ,tN , we choose spatial coordi
nates,x1 , . . . ,xN , and define the Green function as the lim
@7#,

G~xf ,t f ;xi ,t i !5 lim
N→`

E d3x1•••d3xNS 1

2pke D 3~N11!/2

3expF2
e

k(
j 50

N H 1

2Uxj 112xj

2 U2

1
v2~xj !

2 J
1

1

k(
j 50

N

~xj 112xj !•vS xj

2 D G . ~9!

If we are givenn(xi ,t i), then the Green function propagat
this initial distribution to timet f ,

n~xf ,t f !5E G~xf ,t f ;xi ,t i !n~xi ,t i !. ~10!
e
e

-
f

e

Standard manipulations of Eqs.~9! and ~10! ~cf. Ref. @5#,
Chap. 4! can be used to show thatn(x,t) satisfies the ADE
@Eq. ~1!#.

Paths for whichS is minimum contribute most toG in Eq.
~8!. Thus the optimal pathẋ5v(x,t) together with neighbor-
ing paths lying inside a tube of width proportional tok1/2

make the dominant contributions toG. The other classica
solutions of Eq.~4!, for which S is an extremum but not a
minimum, do not directly contribute toG. However, as ex-
periments with electronic devices show, these extremal p
are not only real, but contribute fundamentally to large flu
tuations away from the optimal solution@8#. To explore their
significance, let us first cast our Eq.~4! in Hamiltonian form.
The Hamiltonian

H~x,p,t !5
p2

2
1p–v~x,t ! ~11!

gives rise to the equations of motion,

ẋi5pi1v i , ṗi52pj

]v j

]xi
, ~12!

which are identical to Eqs.~4!; the optimal solution corre-
sponds top50.

A blob of the tracer introduced into even a nonturbule
fluid will be teased out into whorls and tendrils. The dyna
ics of the strong variations ofn can be described in the
Wenzel-Kramers-Brillouin~WKB! ~or ‘‘eikonal’’ ! limit of
the ADE, wherein the physical significance ofpÞ0 dynam-
ics is clearly revealed~c.f. Ref.@3~a!# for other applications!.
Let us writen5Fexp@2W/k#, where bothW andF have far
gentler spatial variations thann itself @9#. Substituting forn
in the ADE, terms of orderk21 give us the following equa-
tion for W:

]W

]t
1v•“W1 1

2 u“Wu250 . ~13!

Thus W obeys the same~Hamilton-Jacobi! equation as the
actionS. However, it is better to view Eq.~13! as the evo-
lution equation of a three-dimensional Lagrangian manifo
defined byp5“W, in a six-dimensional phase space (x,p);
the Hamiltonian equations~12! determine the ‘‘rays’’ of this
system. The meaning ofp is evident from

p5“W52k
“n

n
523~diffusion velocity!1O~k!.

~14!

If we are givenn(x,0) at some initial timet50, thenp(x,0)
is also known, and this Lagrangian manifold can be evolv
forward in time using the Hamiltonian equations~12!. The
casek50 corresponds top50. Rays with these initial con-
ditions always trace the integral curves of the velocity fie
But this motion is unstable to small, diffusive fluctuation
whenk is small. To lowest order ink, the characteristics o
the ADE are described by the dynamics of a point charge
the EM fields of Eqs.~3!; thus the effects of a small amou
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524 PRE 58S. SRIDHAR
of diffusion on larger advective motions can be describ
within a Hamiltonian framework, by constructing EM field
from the velocity field.

A simple example to work out is the encounter betwe
the tracer and a time-independent, straight vortex tube
circular cross section. The particle dynamics is integra
and we can readily solve the special case of a line vortex,
which v5(G/2pR) û and v5Gd(R) ẑ, where (R,u,z) are
cylindrical polar coordinates,G is the circulation around the
vortex, andd(R) is a Diracd function in the plane perpen
dicular to the line. The canonical momenta arepR5Ṙ,
pz5 ż, and pu5(l 2G/2p)—where l 5R2u̇ is the particle
angular momentum—and the Hamiltonian is

H5 1
2 S pR

21pz
21

pu
2

R2D 1
Gpu

2pR2
. ~15!

Both pz and pu are conserved, so the dynamics reduces
R̈5C/R3, where

C5puS pu1
G

p D ~16!

is a constant that determines the sign of the force felt by
particle.

Optimal paths followv, going around in circles in the
plane perpendicular toẑ ~these paths havep50, from which
Ṙ50, ż50, andpu50, the latter implying thatC50). The
smallest of deviations away fromp50 makesCÞ0, and the
force is either attractive or replusive.Thus the optimal solu-
tion ẋ5v is unstable to diffusive fluctuations~much like
what happens for large fluctuations in overdamped brown
dynamics @8#!, illustrating the structural instability of the
case of zero diffusion, as was discussed earlier. It is strai
forward to verify thatC.0 whenul u.(G/2p), so that the
particle spirals outward—the corresponding parts of
tracer are spun out to infinity. For smallerul u, C,0, the
force is attractive, and those parts of the tracer for wh
uṘu,uCu/R are eventually captured by the vortex line. Th
the vortex line will shred the tracer, cloaking itself with th
low angular momentum parts and casting off the rest to
vorticity-free, straining velocity field outside. The physic
meaning of the point particle dynamics is as follows:
tracer particles go around in circles, following the veloc
field, they also diffuse. The diffusion in the radial directio
brings some tracer particles to the center, whereas ot
drift outward.

In a turbulent fluid, vorticity appears to be concentrated
filaments@10#, so our fictitious charged particle~i.e., a ray!
will see magnetic ropes immersed in an electric sea.
particle dynamics of mutually noninteracting charges in su
a disordered environment should reveal much about the
havior of solutions to the ADE. An array of straight vorte
tubes, all parallel to one another, is a two-dimensional pr
lem. The velocity fieldv5“3(c ẑ), where c(x,y,t) is a
stream function is not only independent ofz, but has no
component alongẑ. In this case,
d
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A5“3~c ẑ!, w52
u“cu2

2
. ~17!

Even whenc is independent of time, charged particle orb
in the above EM potentials can be chaotic. The optimal pa
follow the isocontours ofc; an interesting unsolved problem
is to determine the conditions under which the optimal pa
are unstable to diffusive fluctuations. A related problem is
make a connection between the regular or chaotic dynam
of charged particles, and macroscopic transport coefficie
The general case of three-dimensional, turbulent flows
quires following the orbits of charged particles in disorder
EM fields ~Ref. @1# also discusses this forreal EM fields!, a
task that appears numerically less forbidding than solving
ADE itself. Reference@1# reviews the extensive literature o
tracer transport with emphasis on percolation properties
the networks formed by the channels.

When sources and sinks ofn are also present, the follow
ing source-and-sink ADE~sADE! describes advection an
diffusion of the tracer:

]n

]t
1v–“n5

k

2
“

2n1gn,
~18!

“–v50,

whereg(x,t) is the local rate of generation. If we generaliz
Eq. ~2! to include a source fieldkg,

A52v, w52
v2

2
1kg, ~19!

then the Lagrangian of Eq.~6!, with the above expression
for A andw, used in the WPI principle—Eqs.~9! and~10!—
leads to the sADE. The magnetic field remains unaffect
whereas the electric field picks up an additional term equa
2k“g. Charged particle dynamics now has an interest
coupling to this extra electric field that combines both diff
sion and source rate. The Peclet number may be define
Pe5V2T/k, where V and T are flow velocity and time
scales. The limit of large Pe is commonly encountered
turbulent mixing, and when Pe@gT, we have v2@kg,
which implies that the source field in Eq.~19! is a small
perturbation on the basic advective-diffusive dynamics.

Let us return to general considerations of the EM fie
themselves. From the definitions in Eqs.~3!, the EM fields
obey the source-free Maxwell equations:

“–B50, “3E52
]B

]t
. ~20!

It is interesting to see what constraints are imposed on
EM fields whenv obeys the Navier-Stokes~NS! equations,

]v

]t
1~v–“ !v52“P1n“2v,

~21!

“–v50.

Here P is the sum of pressure and potential forces~e.g.,
gravitational potential! per unit mass, and is determined b
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the incompressibility condition onv: ¹2P52¹•@(v–“)v#.
If we take the curl of the NS equation, we obtain an equat
for the vorticity. Recalling thatv52B, we obtain

]B

]t
5“3~v3B!1n“2B, ~22!

which is identical to the induction equation of magnetoh
drodynamics for a fluid with resistivity equal ton. Not all
solutions of Eq.~22! are of interest; only the special solutio
B52v, noted by Batchelor@11# is needed. Using the NS
equations in the expression forE in Eqs.~3!, we obtain

E52v3B1n“3B2“P. ~23!

If we regardE85E1v3B as the electric field in the fram
of the fluid element, then Eq.~23! bears resemblance t
Ohm’s law, wheren equals resistivity, (4p)21

“3B5J is
current density, and2“P is a ‘‘battery’’ term @12#.
,

.

a-

no
oi
n

-

In conclusion,~fictitious! EM fields associated with the
flow of an incompressible fluid—not necessarily obeying t
NS equations—couple to~fictitious! charges, whose diffu-
sive dynamics is exactly equivalent to the dynamics o
passive tracer; ‘‘diffusive dynamics’’ refers to a Wiener pa
integral generalization of classical dynamics. TheE and B
fields, together with the equations of motion of the char
are Galilean invariant~and this is consistent with working in
the Coulomb gauge!. An advantage of this new formulatio
is that, to lowest order, diffusive effects are accounted for
a Hamiltonian formulation of the dynamics of a point char
in EM fields. When the velocity obeys the NS equations,
EM fields are carried around as if the fluid was a conduct
medium whose resistivity equals its viscosity.

Note added in proof. It has been brought to the author
attention that EM fields, similar to Eq.~3!, were earlier con-
sidered by M. Berry@13# in the fascinating context of male
moths chasing female moths.
.
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